ICF惯性约束反应堆 (Inertial Confinement Fusion Reactor (ICF))

HBM的核科技模组中发电量较大的反应堆之一,Watz聚变反应堆是该多方块结构的前身。

介绍

本反应堆基于现实中的惯性约束聚变设计。其基本理论是利用驱动器提供的能量(如激光)将靶丸中的核燃料转变为等离子体,由于惯性等离子体来不及飞散,而是通过向心爆聚被压缩到高温高密度状态,发生核聚变反应。现实中各国也对此有所研究,美国研究装置为“国家点火装置”,我国研究装置为“神光 III ”。

本反应堆造价极其昂贵,会消耗大量铋青铜砷青铜,以及晶化富勒烯

但同时,本反应堆也是后期重要设备。发电效率较高,同时生产非常重要的星流浆

激光器的搭建

由于ICF的本体有核心(即类似聚变反应堆、Watz发电厂的核心),放置核心后会有投影,只需要按照投影搭建焊接就行,所以在这里介绍激光器的搭建方法。

激光器与PWR一样分为外壳方块与内部方块。(如下图)

ICF惯性约束反应堆-第1张图片

在上面的为内部方块,从左到右分别为:ICF Laser Cell,ICF Laser Flash Tube,ICF Laser Capacitor,ICF Laser Turbocharger。

下面的则为外部方块,从左到右分别为:ICF Laser Controller,ICF Laser Port,ICF Laser Casing。

建议在搭建完ICF的聚变部分后再来搭建激光器。

搭建时需要在ICF Laser Controller的后面放置一个或多个Laser Cell(必须在同一直线上),之后用Flash Tube包围Laser Cell,用Capacitor包围Flash Tube,再用Turbocharger包围Laser Cell,最后用Casing包围内部方块,预留Port用于接电线。右击Controller后,若结构无误,Casing和Port会变成名为ICF Laser的技术性方块,当鼠标指针移到Controller上时,会出现类似RBMK的gui提示,显示该激光器的功率。(注意:ICF Laser Controller用于射出激光,因此要与ICF聚变部分的激光接收口在同一直线上且相距50格以内,同时用一个电源开关控制激光器开启关闭。此外,ICF激光器射出的激光会点燃与其接触的实体,因此请注意不要触碰激光。

下图为一个ICF激光器的内部结构示范。此结构可在一个方向上堆叠,堆叠n层后的功率为 15√2 * √n MTU/t 。

ICF惯性约束反应堆-第2张图片

聚变部分

在按照核心的多方块结构投影搭建完成后,将会变成这样,左右两侧有供激光器输入激光的部分。

ICF惯性约束反应堆-第3张图片ICF聚变部分

ICF惯性约束反应堆-第4张图片左右两侧的激光接口,用于接收激光

聚变部分有正反面和上下两个通用接口,可以实现燃料回收和再制造的循环。

使用

在完成激光器,聚变部分,热交换发电部分的建造后,右击ICF聚变部分打开GUI。

ICF惯性约束反应堆-第5张图片

橙色部分:显示射入激光产生的热量。   绿色部分:内部热量缓存。(最大1TTU,目前满热量不会导致熔毁)

蓝色部分:冷却液(默认为液态钠,最大为512000mb)。   深蓝部分:燃料颗粒缓存。

红色部分:热冷却液。                           浅蓝部分:枯竭燃料颗粒缓存。

紫色部分:星流浆(ICF的副产物,可用于在电弧焊机内制造重型元件,有反物质流体属性)的内部缓存量。

冷却液

当激光启动时,无论ICF内部是否有燃料,都会使用激光带来的能量把冷却液转化成热冷却液。

算是一种回本

燃料颗粒

ICF使用燃料颗粒搭配激光器进行发电,每种燃料颗粒在ICF Fuel Pellet Maker当中制作,使用二元燃料组合(即固-固,固-液,液-液)。在制取燃料颗粒时,每个燃料颗粒将消耗每种固体原料(即对应材料的锭或粉)各1个,每种液体原料各1000mB。此外,需注意,含钠靶丸目前只能使用钠粉而无法用液态钠制取,含碳靶丸必须使用石墨制取。

每种燃料都有不同的属性,所有燃料的属性如下表:

燃料种类反应系数耐久系数激光系数
10.851
1.2511
1.511.05
氦-31.7511.25
氦-4211.5
1.250.852
212.5
30.53.5
215
1.251.5

7.5

30.758.75
2.5110
3112.5

制作完成后的燃料属性如下:

    反应系数(此项属性越高,发电功率越高): 燃料1反应系数 * 燃料2反应系数 ;

    耐久(此项属性越高,可以反应的时间越长): 50,000,000,000 / (燃料1耐久系数 * 燃料2耐久系数) ;

    激光功率需求(输入反应堆的激光功率必须大于等于此值才能开始反应):燃料1激光系数 * 燃料2激光系数 * 10MTU 。

在制作燃料颗粒时,可以向其中添加μ子,添加μ子后燃料颗粒的激光功率需求会降低至添加前的1/4。

ICF惯性约束反应堆-第6张图片从左到右为空靶丸,燃料靶丸,耗尽的燃料靶丸

鼠标指针指到的燃料颗粒都会显示其数据。(如下图)

ICF惯性约束反应堆-第7张图片从上至下依次为:消耗程度,燃料类型,需要的热量/功率,反应倍率,μ子催化。(仅有在Pellet Maker内装载了μ子的才会显示)

消耗完的燃料颗粒可以在离心机内回收成一个空颗粒,两个电离粒子和一个铁粉。铁粉为恒星聚变最后阶段的产物,挺科学。

工作细节

激光功率计算

首先寻找激光器内部的有效组成方块:

    ICF Laser Controller后方的所有Laser Cell被视为有效;与有效的Laser Cell相邻的所有Flash Tube被视为有效;与有效的Flash Tube相邻的所有Capacitor被视为有效;与有效的Capacitor相邻的所有Turbocharger被视为有效。

之后计算激光功率:激光功率 = √(有效Capacitor数量 * 2.5) * √(有效Capacitor数量与有效Turbocharger数量中的较小值 * 5) MTU。因此在搭建激光器时,Turbocharge数量与Capacitor数量保持一致即可。

进行反应

首先,ICF反应堆从激光器接受激光,并进行判断:

    若反应堆内部没有燃料或激光功率低于燃料的激光功率需求,则不进行反应,并为反应堆增加 激光功率 * 0.25 的热量缓存;

    若激光功率大于等于内部燃料的激光功率需求,则进行反应:将内部热量缓存增加 激光功率 * 燃料颗粒反应系数 TU,并使燃料颗粒耐久降低 激光功率 点。

之后产出星流浆,产出量为 反应堆内部热量缓存 * 2.5 / 反应堆最大热量(向上取整);

之后冷却反应堆,当冷却剂足够时会带走 反应堆内部热量缓存 * 冷却剂效率 / 4 的热量;

最后反应堆内部缓存热量散失1/1000,若缓存热量仍高于最大热量则将缓存热量重置为最大热量。


则有以下结论:

    反应堆净产能功率约为 输入激光功率 * (燃料球反应系数 - 1) HE/t (忽略损失);

    单个燃料球使用时间为 燃料球耐久 / 输入激光功率 tick;

    星流浆产量约为 (反应堆稳定时内部热量 + 输入激光功率 * 燃料球反应系数) / 400,000,000,000 mB/t(向上取整)。

短评加载中..